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Abstract The broad topic of this paper is the evaluation
of DNA evidence in criminal cases. More specifically, we
deal with mixture evidence which refers to cases where
there are, or could be, several contributors to a biological
stain based on, e.g., blood or semen. The present paper
adresses DNA mixtures based on single nucleotide poly-
morphism (SNP) markers, i.e., diallelic markers. Based
on STR analysis, it is in most cases easy to identify the
presence of a mixture since three or four bands will show
up with a high probability for at least one locus. Obvi-
ously, this will not be the case for diallelic markers and in-
terpreting mixtures will be a great challenge. We address
this problem by first approaching the more general prob-
lem of estimating the number of contributors to a stain. In
addition we discuss how the markers should be selected
and how many are required.

Keywords SNP - Mixture evidence - Likelihood -
Estimates - Bayes

Introduction

The statistical interpretation of forensic DNA mixtures is
well understood for many practical purposes and consid-
erable progress has been made since Evett et al. (1991).
The general formula for likelihood calculations in Weir et
al. (1997) has been discussed and generalized, for instance
by Fukshansky and Bér (1998), Curran et al. (1999) and
Fung and Hu (2000). Several computer programs are
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available, see e.g. Mortera et al. (2002), Fung and Hu
(2000, http://www.hku.hk/statistics/staff/wingfung/), and
Curran et al. (1999, http://statgen.ncsu.edu/storey/). Some
recent references are Hu and Fung (2003) and Fung and
Hu (2002). There are however remaining challenges and
some of these are addressed in the present paper. In par-
ticular, the numbers of contributors to a stain cannot nor-
mally be known with certainty. This problem has been
handled in various ways, Weir (1995) presents alternative
calculations assuming different number of contributors
while Brenner et al. (1996), Buckleton et al. (1998), Lau-
ritzen and Mortera (2002) and others give bounds on like-
lihood ratios that can be used when the number of donors
to a stain cannot be agreed upon. The above approaches
do not use data to estimate the number of contributors in a
formal manner beyond observing that a stain indicates the
minimum number of contributors, for instance at least
three persons must have contributed if five different alle-
les are seen in a profile. Stockmarr (2000) estimated the
number of contributors in a specific example by maximiz-
ing the likelihood. This paper continues this effort in a set-
ting where it appears to be particularly relevant, namely
for SNP (single nucleotide polymorphism) markers. For
these diallelic markers, each locus will display one or two
alleles. Consequently, it is more difficult to assess whether
more than one person have contributed. In fact, Gill (2001)
pointed out that “...the greatest challenge will be to iden-
tify and interpret mixtures”. We address the question (“Is
it a mixture?”’) by first approaching the more general
problem of estimating the number of contributors to a
stain. In addition we discuss how the markers should be
selected and how many are required.

The next section discusses the methods. In particular
the likelihood for SNP markers is written in a form that
makes it easy to estimate the number of contributors and
determine whether a stain is a mixture or not. The result
section presents three examples based on simulated data.
Based on these examples and the general methods, we
draw some conclusions in the last section regarding the
number of markers required and how these should be cho-
sen.
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Methods

We start this section by fixing some notation and reformulating the
main research problems in more precise terms. For a specific
marker we denote the less frequent variant B and the more frequent
Be. Let p; denote the frequency of B at locus i. An individual pro-
file may be summarized by a vector of length N. Element i is O, 1
or 2 depending on whether only B, only B¢ or both alleles are seen.
A stain from x>1 persons may be summarized similarly by a vec-
tor of length N. A main problem may now be phrased and exem-
plified: “Have more than one persons contributed to a specific
stain, say (0, 1, 1, 2, 0, 1)?”

Likelihood and estimation

Using the notation explained above, the probabilities of observing
0, 1, or 2 for marker i may be written:

Poi = pi

Py (1=p;)* )
Pai l—piu—(l—Pi)h-

This follows by a direct argument and agrees with the more gen-
eral formula in Weir et al. (1997). The above equation assumes in-
dependence between the two alleles from a person and indepen-
dence between persons contributing. These independence assump-

tions may be relaxed, leading to modified versions of Eq. 1. If the
markers are independent, the probability of observing

z=(0,1,1,2,0,1)

equals
Po1P12 P13 P24 Pos Pis 2)

Generally, the likelihood for a profile (z,,...,zy) may be written us-
ing indicator functions /(.)

N
L(x) = P(datalx)= ]j[lp&(%=0)p]11(:,=1)p£1(z,=2) N

N x[(z;= xl(z;= . X 1(z;=2)
= [p e =p )" (1-p2 = (-p,)")

Consider next the case where all p,=p and let ny and n; count the
number of occurrences of 0’s and 1’s. In this particular case, all
relevant statistical information is contained in the sufficient statis-
tic (ng,n;) and the probabilities are given by the multinomial for-
mula

A\N—ng—ny

P (ng.m|x)=a(ng.nm)p>™ (1 _P)zml (I_sz _(l_p)h)
“

where a(ny,n,)=N!/(ny!n;!(N-ny—n,)!). In the general case, the un-
known number of contributors may be estimated by maximizing
Eq. 3 with respect to x. If all p=p, one may choose to use Eq.4. A
large number of computer programs will handle the maximization.
Apparently, there is no simple formula for the maximum likeli-
hood estimator except for the trivial case when all p,=0.5. Then:

1 ny +my

x*= lo,
& 2N

B 2log?2

The above estimator is finite it and only if ny+n,21. In the Appen-
dix it is shown that the general likelihood Eq. 3 also has a unique
and finite maximum if and only if ny+n>1.

Note that:

P(ny+ny gl)zl—ﬂ(l—pfx ~(1=p))=1-(1-p> —(1—p)“)N
i=1
(&)

where the last equality assumes p,=p, i=1,...,N. The right hand side
of Eq.5 is minimized for p=0.5 for fixed x.

Is it a mixture?

We next consider the question of determining whether the stain is
a mixture or not. Two approaches are outlined, a frequentist and a
bayesian.

Frequentist approach. The parameter x can be considered fixed
but unknown and two hypotheses formulated in the usual way:

H, : One person contributed, i.e., x=1
H, : More than one person contributed, i.e., x > 2.

A reasonable approach is to reject Hy when

[ P (datalx =) >c. ©
P(data|x =1)

The specific value of ¢ can be determined by simulating K under
H,. Since K is discrete, it is not possible to achieve a precise level
of significance. Example 2 in the next section indicates that a rea-
sonable and simple solution is to reject H, and claim that a stain is
a mixture when K>1.

Bayesian approach. Sometimes there is information available in
addition to the SNP markers. Different sources of data may be
combined as explained below. Bayes theorem gives:

P(data|x =i)a (i)
* P (datalx = j)e(j)

P(x=ildata)=

where P(x=j)=0uj) is the prior distribution. The posterior odds for
the stain to be a mixture can be written
P(x>data) & P(x= jl|data)
P(x=1|data) N Z‘Z (x =1|data)
= P(data|x = j)a(j)
/= P(datalx=1)a(1)

To continue, some prior assumptions are required and a formulation
in terms of the prior odds for being a mixture, R= 3" & (j)/ (1),
seems reasonable. The posterior odds will depend on not only R
but the entire x distribution. However, we can find an upper bound
for the posterior odds:
= P(data|x = j)a ()
j=2 P(datalx=1)a (1)
MY o))

P(data|x =1)oc(1)
M R,
P(data]x=1)

IN

)

where

M = max P(data|x=j).
=234

Observe that the above approach may only be used to statistically
show that there is only one contributor. The previous frequentist
approach applies more generally. However, if one is willing to as-
sume more a priori data, the restriction on the Bayesian approach
disappears. For instance, specifying the alternative hypothesis

“x=2" corresponds to assuming o(j)=0 for j>2 and the posterior
odds

P(data|x=2)c(2)
P(data|x =1)a(1)



can be used to distinguish between the alternatives for a specified
prior on ou(2)/0(1).

Results

The previous section has presented results regarding (1) es-
timation of the number of contributors to a stain, (2) test-
ing if a stain is a mixture or not and (3) verification of a
non-mixture allowing for inclusion of prior information or
data. Three examples follow to demonstrate the practical
implementation of the methods. The examples are based
on 1000 simulated datasets in S-PLUS 6.0.

Example 1

This example discusses the number of loci required to ac-
curately estimate the number of contributors. We provide
detailed explanation of the first line of Table 1. Column 1
shows that the data is simulated with x equal to 1, fol-
lowed by a column indicating the number of loci, N=50 in
this case. The two next columns list the fraction correctly
identified for p=0.1 and p=0.5. In the former case 0.965 or
96.5% were correctly classified whereas there were no er-
rors for p=0.5. As expected, the precision increases in N
and decreases in x. If the number of contributors is 3 or

Table1 The fraction of correctly identified number of contribu-
tors is shown in the two rightmost columns for p=0.1 and p=0.5 for
various values of x (the number of contributors) and number of

markers (N)

X N Correct (p=0.1)  Correct (p=0.5)
1 50 0.965 1.000
2 50 0.717 0.876
3 50 0.590 0.421
4 50 0.424 0.000
5 50 0.417 0.000
1 100 0.990 1.000
2 100 0.854 0.969
3 100 0.753 0.802
4 100 0.623 0.000
5 100 0.545 0.000
1 200 1.000 1.000
2 200 0.960 0.999
3 200 0.902 0.870
4 200 0.797 0.396
5 200 0.756 0.000
1 500 1.000 1.000
2 500 0.999 1.000
3 500 0.989 0.990
4 500 0.964 0.851
5 500 0.934 0.000
1 1000 1.000 1.000
2 1000 1.000 1.000
3 1000 1.000 0.998
4 1000 0.997 0.929
5 1000 0.986 0.458
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Fig.1 The standard deviation of the estimate of the number of
contributors is plotted as a function of p for one contributor, i.e.,
x=1, (solid line) and x=2 based on a simulation exercise with 200
markers. The uncertainty increases in x and decreases in p
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Fig.2 The number of loci required to secure a finite maximum
likelihood (ML) estimate of the number of contributors with prob-
ability b is plotted as a function of p based on Eq. 5

less, the correct classification rate is always above 87%
for N=200. Observe that the case with 5 contributors may
not be resolved satisfactorily even with 1,000 markers for
p=0.5. Figure 1 shows the standard deviation of the esti-
mator of x as a function of p<0.5. Two intuitive results are
confirmed, the uncertainty increases in x and decreases in
p- Figure 2 displays the number of loci required to secure
a finite estimate of the number of contributors with prob-
ability b. The plot is based on inequality Eq.5 and ex-
plains to some extent why it is difficult to estimate cases
with many contributors for p close to 0.5.

Example 2

Data was simulated first assuming x=2. The test statistic K
defined in Eq.6 was calculated and the null hypothesis
was rejected when K>1. In other words, we conclude that
two or more persons contributed if the maximal likelihood
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Table2 The properties of the K-statistic for mixtures defined in
Eq. 6 are shown for various values of N and for p=0.1 and p=0.5

N p=0.1; x=2  p=0.5; x=2 p=0.1; x=1 p=0.5; x=1
50 0.912 0.998 0.074 0.004

100 0.982 1.000 0.023 0.000

200 0.998 1.000 0.002 0.000

500 1.000 1.000 0.000 0.000

assuming x>2 exceeds the likelihood assuming x=1. Table 2
summarizes the results for varying N (50, 100, 200, 500)
and p (0.1 and 0.5). The power is high, or equivalently,
the probability of a type II error is small. For N>100 the
probability of reaching the correct conclusion is 0.982
(N=100, p=0.1) or higher. It remains to check the signifi-
cance level of the test and we simulated data with x=1 for
this purpose. The two rightmost columns of Table 2 show
that the test also performs well with respect to type I errors,
i.e., the probability of falsely claiming a mixture is low.

Example 3

Recall that Eq.7 could be useful to prove that a stain is
not a mixture, when that is indeed the case. We simulated
data for x=1, N=100, and p=0.1, and computed the ratio
M/P(datalx=1). In 95% of the cases, the ratio was smaller
than 0.0008, reducing any prior odds for a mixture sub-
stantially towards zero. For p=0.5, the ratios are even
smaller.

Discussion and concluding remarks

The examples of the paper have been based on simulated
data and so we are able to see how the methods perform in
cases where the truth is known. Another reason for simu-
lating is that relevant case data using SNP markers do not
appear to be available. Gill (2001) considered 50-150 mark-
ers. For practical forensic case work, confusing a mixed
profile and a profile from a single person, could have se-
rious consequences as a match between a stain and refer-
ence person could be missed. Based on our results, it
seems fair to conclude that a decision regarding mixture
or not can be reached for the number of markers in the in-
dicated range. Based on Table 2, we recommend 100 mark-
ers. In this case the type II error, i.e., the probability of
missing a mixture stain, ranges from O to 0.018 while the
type I error lies between 0 and 0.023. It is harder to esti-
mate the precise number of contributors, particularly if a
large number, say five or more, cannot a priori be ex-
cluded. Table 1 shows that with 1, 2 or 3 contributors, the
correct classification rate is 75% or higher. This accuracy
may be acceptable for investigating purposes, but insuffi-
cient for a court. It is possible to obtain a posterior distri-
bution on the number of contributors. The evidence may
then be weighed according to this distribution.

It remains to be seen what numbers will be available
and if the problems of interpretation of data based on con-
ventional markers (see Evett and Weir 1998; Evett et al.
1998) will be reduced for SNPs. Different contributors to
a stain could have donated varying amounts and this in-
formation could be used to improve estimates.

The calculations are simplified by the diallelic struc-
tures of SNPs. For conventional markers similar calcula-
tions are obviously more complicated. However, numeri-
cal or simulation-based results are always obtainable. More-
over, the formulation of hypotheses would typically differ
for conventional markers; the question of a mixture or not
is typically not relevant. For instance, if one marker dis-
plays 5 alleles and the other fewer, one might want to test
the null hypothesis x<3 against the alternative x>3. The
test procedure we have suggested extends easily to this
case.
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Appendix

Consider the likelihood L(x) given in Eq. 3. Observe that
the likelihood increases in x if all z;=2 and decreases in x
if all z,<2. Assume that not all z; equals 2. Then we show
below that L(x) always has a single maximum for some
x=1.

Maximizing L(x) is equivalent to maximizing

/(x)=log L[x]

N
=Y 1(z,=0)2xlog p, +1(z, =1)2xlog(1-p,)

i=l1

+1(z = 2)log(1—pi2x —(l—pi)zx)
N
= Cx+ Y 1(z, =2)log(g, (x)).
i=1
where C<0 and

&i (x)zl_Pizx_(l_Pi)zx

We see by direct computation that g; (x)< 0 for all x>0.
Defining h,(x)=log(g{x)), it follows that 4 (x)<0 for all
x>0, and thus that f{x)<0 for all x>0. Further, we get that
lim,_,..g:(x)=1, that lim,_,_h,(x)=0, and that lim,_, f(x)=—co.
These two facts about f show together that f, and thus L,
has a unique maximum for some x=0. For discrete x, one
or two consecutive positive integers maximize L.
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